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Abstract. The iwo-dimensional planar spin model in the presence of p-fold random 
anisotropy has been investigated using Monte Carlo simulation and finite size scaling. The 
system has been examined for p = 2, 3, 4, 5 ,  6 and lattice sizes N = 4', 8'. 16'. The critical 
behaviour is found to depend on the value of p and is of two types. Far p = 3, 5, 6 the 
results indicate a transition to a quasiferromagnetic sta!e at the same temperature a6 the 
pure system. At lower temperatures there is evidence for a second transition; however, the 
rystem remeins qu'siCerromngaetic. For p = 2, 4 !he beheviox is different 'ad re%!!$ 
suggest a second-order transition to a spin glans phase and no quasiferromagnetism. 

The critical properties of the planar spin model (also called the XY model) in the 
presence of p-fold anisotropy has been investigated by Monte Carlo simulation and 
finite size scaling. The Hamiltonian for this system is 

H = - J  1 C O S ( $ ~ - $ ~ ) - D ~ C O S ( ~ $ ~ - - ~ , ) .  (1) 
( n )  

In the above {$;} are site variables taking values between 0 and 2a and { e j ]  are 
quenched in random anisotropy axes uniformly distributed in the range 0 to 2 ~ .  
Interaction is between nearest neighbours and the system is confined to a two- 
dimensional square lattice with periodic boundary conditions. 

For the pure system with D=O the critical properties of Hamiltonian (1) 
are believed to be well understood [I, 21. In this case the system undergoes a single 
phase transition from a high-temperature paramagnetic phase to a low-temperature 
quasiferromagnetic phase. A quasiferromagnetic phase is characterized by an infinite 
correlation length and algebraic decay of pair correlation function, and also a zero 
ferromagnetic order parameter. Renormalization group and other calculations indi- 
cate a transition temperature of r / 2 .  However, subsequent simulation [3] has identi- 
fied the transition temperature as 0.895 but otherwise confirms the overall picture 
of the critical properties. 

For non-zero values of D each site variable resides in a random anisotropy field 
with p equivalent axes. The effects of such fields have been carefully investigated by 
Cardy and Ostlund [4] within the methodology of replicas and renormalization group. 
Their results indicate an interesting phase structure. For a range of temperature given 
by 

4a a 
7 < T < -  
P 2 
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the randomness is predicted to be irrelevant. This implies the existence of a temperature 
range within which the system remains quasiferromagnetic as in the pure system. For 
T < 4 . ~ 1 ~ ’  the randomness is predicted to destroy quasiferromagnetism; however, the 
overlap between replicas does not go to zero indicating that the low-temperature phase 
may be ‘glassy’. This picture of the critical properties is seen from (2) to be valid for 
p > d. For p less than this the intermediate quasiferromagnetic phase vanishes. 

The nature of the low-temperature transition out of the quasiferromagnetic phase 
was also considered by Cardy and Ostlund. Interestingly their calculations predict that 
at low temperatures the coupling between vortices renormalizes to negative values. 
This instability at long length scales is interpreted as a signature of a possible first-order 
transition. In this picture p = 4 appears as a special case. For p < 4 the vortex density 
renormalizes to zero before the instability in vortex coupling is established, while this 
is not the case for p>4 .  Therefore p = 4  is a special case above which Cardy and 
Ostlund speculated that the transition at low temperatures may be first order. 
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Figure 2. Plots ol g against temperature T.  The locations ol the specific heat peak (from 
figure I )  are indicated by arrows. The broken line is g calculated for the pure system from 
[7]: ( a ) i s  f o r p = 6 , ( b ) i n  f o r p = 5  and (e )  is far p = 3 .  =4', 0 = 8 '  and A=l6'. 

Monte Carlo simulation and finite size scaling have been used to probe the system 
using J = D = 1 in Hamiltonian (1). The simulation has been done for p = 3, 4, 5 ,  6, 
and also p = 2 which is outside the range of the predictions of Cardy and Ostlund. 
The results reported indicate a somewhat different phase structure from that previously 
expected. 

The specific heat has been calculated since it provides an indication of the order 
of a transition, particularly a first-order transition. The nature of the phases, whether 
spin glass, quasiferromagnetic or paramagnetic, has been examined by calculating the 
overlap between non-interacting identical replicas of the system. This is defined to be 

where &; and 4; are the values of the site variables in two independent replicas. f, is 
the time used for relaxing the system before calculating Q ' ( f ) .  N is system size and 



L1302 Letter to the Editor 

1.0- 

0.7 

0.6 

0 

0.5 

0.4 

U 0.6 - 
0.4 - 
0.3 - 
0.2 - 
0.1 - 

0.8 1 .o 1.2 1.4 

- 

b 

l 8 0 . ~ . . 1  

0.8 1.0 1.2 1.4 

T .  

Figure 3. g against temperature T :  ( a )  i s  for p = 4 and ( b )  is for p = 2. * = 4’. = 8’ and 
A=16’. 

for scaling purposes N = 4*, 8* and 162 have been used. Using (3) the distribution of 
Q’( t )  was calculated using 

where [ ] denotes average of different replicas and M is the number of measurements. 
As with most problems involving randomness the problem of metastability and 

long relaxation times affected this simulation. As a criterion to ensure adequate 
relaxation times the same criterion as employed by Bhatt and Young [ 5 ]  in their 
extensive study of the Edwards-Anderson spin glass was used. To do  this the overlap 
between the same replica at different times is calculated. This is defined as 

1 
N i  

Q ( t )  =-E cos(~;(I,)-f#,;(2t,+ I ) ) .  

The distribution of Q( t )  is calculated as 

Equations (4) and (6) give two distributions for q v sh 
limit to+m. From distributions (4) and ( 6 )  the exbectation value of 

tical in the 
. .  . .  calculated. 

Only those results from which these two calculated values of the expectation of q 2  
agree are reported here. This imposed quite a severe restriction on the simulation and 
runs of 4.5 million Monte Carlo steps were used for all temperatures below 0.9. 

The results that follow were calculated using p ’ ( q )  and the field averaging was 
done using 256, 64 and 16 replicas for system sizes N =42, S2, 162 respectively. From 
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P ‘ ( q )  the scaling function g defined by 

g =I 2 { 3 -$) (7) 

was calculated, where ( ) denotes average over P ’ ( q ) .  g is a convenient scaling function 
for detecting both spin glass and quasiferromagnetic order. It has the scaling form 

(8) 

Care must be exercised in interpreting g since in the quasiferromagnetic phase g has 
an asymptotic value of 0.75 and this behaviour must be distinguished from true spin 
glass freezing. 

The results naturally divide into two types, depending on the value of p.  Firstly 
consider p = 3, 5 ,  6. Results for the specific heat are shown in figure 1. The location 
of the Kosterlitz-Thouless transition temperature TKT is indicated by an arrow. For 
p = 5 ,  6 there is a peak or shoulder in the specific heat at temperatures below TKs. 
This behaviour is indicative of a second low-temperature transition as predicted by 
Cardy and Ostlund. A first-order transition is characterized by a growth in peak height 
proportional to N. No such growth is observable in figures l ( a )  or 1(b) and only a 
weak transition is evident. It may be that the system sizes used here are insufficient to 
exhibit the asymptotic behaviour which could be first order. However, simulations 
done for the case p = 6 only [ 6 ]  and on system sizes up to N = 128* only indicate the 
presence of a shoulder in the specific heat at about T = 0.45. 

The results for p = 3 are shown in figure 1( c ) .  No low-temperature peak or shoulder 
is evident, confirming the prediction of different behaviour above and below p = 4 
although no indication of a first-order transition has been found. 

Plots for g are shown in figure 2 .  The curves for all system sizes coalesce at TKT 
and remain concurrent throughout the accessible temperature range. Further, g rapidly 
saturates at the value of about 0.75 characteristic of a quasiferromagnet. For comparison 
plots of g calculated for the pure system in the spin wave approximation [7] are also 
shown. It is seen that these curves are virtually coincident with the Monte Carlo data. 
The positions of the peaks in the specific heat are indicated by arrows in figure 2. It 
is seen that there is no change in g at these temperatures that might be the signature 
of a change to either a paramagnetic or frozen spin glass state. It could be that such 
a change occurs at lower temperatures and the specific heat shoulder is only a precursor. 
However, the indications here are that the system remains quasiferromagnetic 
throughout the temperature range with only a change in short-range order. 

For p = 2, 4 the results are different. The results for g are shown in figure 3. Here 
it is seen that the curves intersect and then diverge. Thus there is a critical point at 
about T = 1 for p = 4 and T = 1.1 for p = 2.  The divergence of the curves below these 
temperatures indicate that the low-temperature phase is not quasiferromagnetic. Figure 
3 is typical of the behaviour expected for a transition to a spin glass state and is similar 
to data obtained for the four-dimensional Edwards-Anderson king spin glass [8]. 

At lower temperatures than those shown in figure 3 there is slight evidence for a 
change in behaviour of g, perhaps indicating other critical behaviour. However, the 
numerical data is too weak on this point and this suggestion is put forward only as a 
speculation. 

I thank the SERC for their support and also John Steel and the staff of the Centre for 
Parallel Computing at London University for much-valued help and assistance. 

g = g ( ( n ) ” ” (  T - T J ) .  
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